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ABSTRACT The role of the gut microbiome in critical illness is being actively inves-
tigated, but the optimal sampling methods for sequencing studies of gut microbiota
remain unknown. Stool samples are generally considered the reference standard but
are not practical to obtain in the intensive care unit (ICU), and thus, rectal swabs are
often used. However, the reliability of rectal swabs for gut microbiome profiling has
not been established in the ICU setting. In this study, we compared 16S rRNA gene
sequencing results between rectal swab and stool samples collected at three time
points from mechanically ventilated critically ill adults. Rectal swabs comprised 89%
of the samples collected at the baseline time point, but stool samples became more
extensively available at later time points. Significant differences in alpha-diversity
and beta-diversity between rectal swabs and stool samples were observed, but these
differences were primarily due to baseline samples. Higher relative abundances of
members of the Actinobacteria phylum (typically skin microbes) were present in rec-
tal swabs than in stool samples (P � 0.05), a difference that was attenuated over
time. The progressively increasing similarity of rectal swabs and stool samples likely
resulted from increasing levels of stool coating of the rectal vault and direct soiling
of the rectal swabs taken at later time points. Therefore, inferences about the role of
the gut microbiome in critical illness should be drawn cautiously and should take
into account the type and timing of samples analyzed.

IMPORTANCE Rectal swabs have been proposed as potential alternatives to stool sam-
ples for gut microbiome profiling in outpatients or healthy adults, but their reliability in
assessment of critically ill patients has not been defined. Because stool sampling is not
practical and often not feasible in the intensive care unit, we performed a detailed com-
parison of gut microbial sequencing profiles between rectal swabs and stool samples in
a longitudinal cohort of critically ill patients. We identified systematic differences in gut
microbial profiles between rectal swabs and stool samples and demonstrated that the
timing of the rectal swab sampling had a significant impact on sequencing results. Our
methodological findings should provide valuable information for the design and interpre-
tation of future investigations of the role of the gut microbiome in critical illness.
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Gut microbial dysbiosis is plausibly a contributor to the onset, evolution, and
outcome of critical illness, but the mechanisms involved have not been fully

elucidated (1, 2). Fecal microbial communities in critically ill adults display lower
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diversity than and distinct taxonomic signatures compared to fecal samples from
healthy individuals (3). Thus, defining the pathogenetic disruptions of gut communities
during critical illness may help identify new targets for intervention (1, 2).

Sampling gut microbiota for sequencing analyses can be challenging in the inten-
sive care unit (ICU). Critically ill patients frequently experience constipation or ileus (4),
and the provision of early enteral nutrition is highly variable (5). Thus, critically ill
patients may not have any bowel movements, especially early in their ICU course.
Furthermore, standard decontamination practices in ICU care (6) often result in stool
disposal before samples are collected. For these reasons, rectal swab use represents an
attractive, minimally invasive method for sampling gut microbiota, which is routinely
used in clinical practice for screening of vancomycin-resistant Enterococcus coloniza-
tion.

Rectal swabs have been proposed as potential alternatives to stool samples in
ambulatory patients (7, 8), but data in critical illness are limited. Recent work from
Bansal et al. (9) in analyses of nine critically ill patients showed compositional discrep-
ancies between rectal swabs and stool samples when rectal swabs were not visibly
soiled by stool. To further investigate systematic differences in the gut microbial
profiles captured by stool specimens versus rectal swab samples, we obtained data
from a larger cohort of 106 patients admitted to the medical ICU at a tertiary care
academic center.

Detailed methods are reported in Text S1 in the supplemental material. Briefly, in
this observational cohort study, we prospectively enrolled consecutive mechanically
ventilated patients with acute respiratory failure from any cause. We collected rectal
swabs and/or stool samples at baseline (days 0 to 2 from intubation) and at the middle
(days 3 to 6) and late (days 7 to 10) intervals of follow-up starting at the time of
intubation and continuing for up to 10 days if the patient remained in the ICU. Rectal
swabs were collected according to a standard operating procedure (i.e., placing the
patient in a lateral position, inserting the cotton tip of the swab into the rectal canal,
and rotating the swab gently for 5 s), unless clinical reasons precluded movement of
the patient (e.g., severe hemodynamic or respiratory instability). Stool samples were
collected when available, either by taking a small sample from an expelled bowel
movement (before cleaning of the patient and disposal of the stool) or from a fecal
management system (rectal tube) placed for management of diarrhea and liquid stool
collection. For comparisons with healthy gut microbiota, we also included 15 stool
samples obtained from healthy volunteers used for fecal microbiota transplantation
(FMT stool). We extracted bacterial DNA and performed 16S rRNA gene sequencing (V4
region) using an Illumina MiSeq system with standard protocols as previously described
(10) and as detailed in Text S1. Sequencing data were analyzed for alpha/beta-diversity
and taxonomic composition using R software. To assess longitudinal changes of
alpha-diversity over time as well as to account for the effects of potential confounders
on the associations between sample type and gut microbiota profiles, we constructed
a set of multivariate models (Text S1), adjusting for the following potential confounders:
(i) early enteral nutrition (initiation of gastric or enteral feeds within 48 h of ICU
admission); (ii) severity of illness by Sequential Organ Failure Assessment (SOFA) scores;
(iii) presence of rectal tube (indicator of severe diarrhea); (iv) obesity; (v) clinical
diagnosis of sepsis.

We enrolled 106 patients with a total of 171 samples (132 rectal swabs and 39 stool
samples). Stool samples were available from 25 (24%) patients during the study period,
and 10 patients had both sample types available. Patients with stool samples available
had baseline demographics (age, sex, body mass index [BMI]) similar to those of the
patients without stool samples (Fig. 1A) but had higher SOFA scores and longer
duration of ICU stay and mechanical ventilation (Wilcoxon P � 0.001). Sample type
availability varied by follow-up interval as follows: the rectal swabs constituted the
majority (87%) of samples at the baseline interval, but the availability of the stool
samples progressively increased for larger proportions of patients (61% of patients at
late interval; Fig. 1B).
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Rectal swabs and stool samples produced similar numbers of reads overall (high-
quality 16S rRNA gene sequences; median [interquartile range {IQR}] � 4,235 [1,034]),
which was a much higher level than the number of reads produced by experimental
negative controls (Wilcoxon P � 0.0001; see Fig. S1 in the supplemental material),
suggesting successful recovery of bacterial DNA signal by both sampling techniques. In
the baseline interval, the rectal swabs had higher alpha-diversity values (median
Shannon value � 2.3 [IQR value � 0.9]) than the stool samples (1.7 [1.1], Wilcoxon
P � 0.02) (Fig. 2A; see also multivariate-adjusted analysis in Table S1 in the supplemen-
tal material), but samples collected later had similar alpha-diversity values (P � 0.68 and
0.30 for middle and late interval comparisons, respectively). Notably, both the rectal
swabs and the stool samples had significantly lower alpha-diversity at baseline than the
FMT stool samples from healthy donors (Wilcoxon P � 0.0001; Fig. 2A). Over time, there
was a progressive decline in the alpha-diversity of ICU samples seen after adjusting for
sample type (rectal swab versus stool samples), and these follow-up ICU samples
continued to have lower alpha-diversity than the FMT stool samples (Fig. 2A; see also
Fig. S2).

Rectal swabs and stool samples were systematically different by beta-diversity data
(Bray-Curtis dissimilarity index [permutational multivariate analysis of variance {PER-
MANOVA} P � �0.0001]; Fig. 2B), even after adjustment for potential confounders
(Table S2). Of note, FMT stool samples were more similar to stool samples from ICU
patients than to rectal swabs by beta-diversity analysis (Fig. 2B). By stratifying rectal
swabs based on follow-up interval, visualization of beta-diversity data with principal-
coordinate analyses (PCoA) revealed that the rectal swabs in the late interval were
compositionally more similar to the stool samples than to the rectal swabs obtained
earlier (Fig. 2C). By PERMANOVA, a statistically significant temporal effect for changes
in beta-diversity values was found only for rectal swabs (P � 0.002) and not for stool
samples. Next, in the subset of patients with both stool and rectal swabs available at
different intervals, we examined the relative impact of patient identity versus the
sample type variable on the beta-diversity data (effectively asking whether different
sample types obtained from the same patient were more similar to each other than to
same sample types obtained from different patients). By PERMANOVA, the sample type
was the only variable significantly associated with differences in beta-diversity values
(P � 0.002) (Table S3); i.e., knowing whether a community taxonomic profile was

FIG 1 Cohort characteristics and sample type availability over time. (A) Table listing baseline characteristics and clinical outcomes of patients with rectal swabs
only versus patients with stool samples available. P values are from Wilcoxon tests for continuous and Fisher’s exact tests for categorical variables (highlighted
in bold when significant [P � 0.05]). (B) Stacked-bar graph of numbers of rectal swabs versus stool samples at each time interval (purple for rectal swabs and
brown for stool samples). The proportion of stool samples available at each time interval is shown with white characters.
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FIG 2 Alpha-diversity and beta-diversity comparisons show markedly different representations of the gut microbiome by sample type. (A) Alpha-diversity
analyses by sample type and follow-up interval showed that rectal swabs had higher Shannon index values than stool samples at the baseline time point

(Continued on next page)
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derived from a rectal swab or from a stool sample was more important than knowing
from which patient the sample was taken. In further sensitivity analyses, we examined
the potential impact of different methods of stool sample acquisition (collection from
a rectal tube bag versus from bowel movements) but did not find any significant
alpha-diversity or beta-diversity differences (Fig. S3).

Analyzing the baseline taxonomic composition at the phylum level, we noted that
the rectal swabs had higher relative abundances of Actinobacteria (a commensal skin
microbe) than the stool samples (Wilcoxon P � 0.05 for additive log ratio transforma-
tion comparison). Actinobacteria abundance declined significantly over time only in
rectal swabs and not in stool samples (Fig. S4). At the genus level, stool samples had
higher relative abundances of members of the Akkermansia, Bacteroides, Enterococcus,
and Parabacteroides taxa, which are considered typical members of the gut microbiome
in critically ill patients (Fig. S5). Examination of the taxonomic composition at the genus
level for 10 patients who had both sample types available at different follow-up
intervals showed marked discordance between the rectal swabs and the stool samples
(Fig. S6).

Our analyses in a large cohort of critically ill patients highlight significant differences
between the more accessible rectal swabs and the harder to obtain, but commonly
viewed as reference standard stool samples. In our study, stool sample availability
captured distinct patient characteristics, perhaps because morbid critically ill patients
with longer ICU stays had higher likelihood of stool passage and collection during the
study follow-up period. Nevertheless, stool samples and rectal swabs had significant
differences in alpha and beta-diversity even after adjustment for potential confounders
of the associations between sample types and microbiota community composition.

Systematic differences in alpha-diversity and beta-diversity by sample type were
largely attributable to the baseline samples acquired at time points close to ICU
admission. At these early time points, 87% of the available samples were rectal swabs
and most (58%) of the patients were not receiving enteral nutrition. Stool presence in
the rectal vault may have been limited, leading to “unsoiled” swabbing of the rectal
mucosa and perirectal skin, with a resulting disproportionately higher abundance of
skin bacteria (i.e., members of the Actinobacteria phyla) than would normally be
expected for gut microbiota profiles (11). The temporal convergence of microbial
profiles between rectal swabs and stool samples observed in our study suggests that
progressive recovery of gut motility during the ICU course and stool presence in the
rectal vault may have improved the reliability of “soiled” rectal swab sampling, al-
though we did not qualitatively score the macroscopic appearance of swabs as
performed previously in the study by Bansal et al. (9). In addition, our study design with
periodic sampling in predefined intervals rather than on consecutive days hindered our
ability to detect day-to-day dynamic changes of gut microbiota communities and
limited the number of follow-up samples in our cohort. Thus, analyses in the late
interval have low statistical power and may have also been affected by informative
censoring, i.e., patients not contributing late follow-up samples due to rapid clinical
improvement and discharge from the ICU or due to clinical deterioration and early ICU
death. Since we were not able to perform head-to-head comparisons of rectal swabs
and stool samples obtained at the same time, the notable discordance of microbial
community profiles by sample type observed in the small subset of patients with

FIG 2 Legend (Continued)
by a Wilcoxon test (P � 0.02) but not at subsequent follow-up intervals. Both rectal swabs and stool samples had significantly lower alpha-diversity than
FMT samples (P � 0.0001) at baseline and at subsequent follow-up intervals. There was significant decline of Shannon index values over time, adjusting
for sample type with a mixed linear regression model with random patient intercepts (shown in table inset). (B) Beta-diversity analyses: principal-coordinate
analyses of Bray-Curtis dissimilarity indices between rectal swabs and stool samples. A greater distance between samples indicates greater dissimilarity. In
the left panel, all available samples are stratified by sample type, showing significant differences between rectal swabs and stool samples (permutational
multivariate analysis of variance [Permanova] P � 0.0001). FMT samples appeared compositionally more similar to stool samples than to rectal swabs from
critically ill patients. In panel C, stratified analyses by study follow-up interval for rectal swabs show that rectal swabs in the late interval were more similar
to stool samples (overlapping ellipsoids) than to rectal swabs obtained earlier (baseline or middle interval).
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longitudinal samples of both types requires cautious interpretation, given that it was
not possible to account for patient-level temporal variability.

Our results call for caution in the design of gut microbiome studies in critically ill
patients. Despite their availability, rectal swabs may offer biased representations of the
presumed gut microbial communities, especially when sampling is conducted early in
the course of critical illness. Consequently, analyses of gut microbiota studies need to
take into account both the actual sample types used and the timing of sample
acquisition, because rectal swabs and stool samples are not interchangeable for the
purpose of microbiota sequencing profiling. Accurate and reproducible delineation of
the role of the gut microbiome in critical illness will require consistent sampling
protocols, recording of clinical variables, and longitudinal assessments.

Data availability. Raw sequences used for this project have been deposited in the
BioProject database and are publicly available at https://www.ncbi.nlm.nih.gov/
bioproject/516701. Taxon tables, metadata, and the R statistical code required to
conduct the analyses described here are publicly available at https://github.com/
MicrobiomeALIR/.
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